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Abstract. Preconditioned gradient iterations for a large and sparse Hermitian generalized eigenvalue problem4

Ax = λBx with positive definite B, are efficient methods for computing a few extremal eigenpairs. In this paper5

we give a unifying framework of preconditioned gradient iterations for a definite generalized eigenvalue problem6

with indefinite B. More precisely, these iterations compute a few eigenvalues closest to the definiteness interval7

(which can be in the middle of the spectrum) and the corresponding eigenvectors of definite matrix pairs (A,B),8

that is, pairs having a positive definite linear combination. Sharp convergence theorems for the simplest variants are9

given. This framework includes an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG)10

algorithm derived by Kressner, Miloloža Pandur, and Shao [Numer. Algorithms, 66 (2014), pp. 681–703]. We11

also give a generic algorithm for constructing new “indefinite extensions” of standard (with positive definite B)12

eigensolvers. Numerical experiments demonstrate the use of our algorithm for solving a product and a hyperbolic13

quadratic eigenvalue problem. With excellent preconditioners, the indefinite variant of LOBPCG is the most efficient14

method. Finally, we derive some ideas how to use our indefinite eigensolver to compute a few eigenvalues around any15

spectral gap and the corresponding eigenvectors of definite matrix pairs.16
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1. Introduction. The generalized eigenvalue problem (GEP) for given matrices A,B ∈
Cn×n is to find scalars λ and nonzero vectors x ∈ Cn such that

(1.1) Ax = λBx.

The pair (λ, x) is called an eigenpair, where λ is an eigenvalue and x is a corresponding20

eigenvector. The GEP (1.1), where A and B are both Hermitian or real symmetric, occurs21

in many applications of mathematics. A very important case is when B (and A) is positive22

definite which appears, for example, in the finite element discretization of self-adjoint and23

elliptic PDE-eigenvalue problems [20]. Another very important case is when B (and A) is24

indefinite, but the matrix pair (A,B) is definite, meaning that there exist real scalars α, β such25

that the matrix αA+ βB is positive definite which appears, for example, in mechanics [57]26

and computational quantum chemistry [5]. Many theoretical properties (such as variational27

principles, perturbation theory, etc.) and eigenvalue solvers for a Hermitian matrix have been28

extended to definite matrix pairs [48, 54, 57].29

Suppose A and B are both Hermitian and the pair (A,B) is definite; this excludes30

singular pairs, meaning that αA + βB is a singular matrix for each choice of the scalars31

α, β. In this paper, we are interested in solving the partial definite GEP (1.1), where B32

(and A) is indefinite. In general, when (A,B) is a definite pair, both matrices A and B33

can be singular, but since a definite pair is a regular pair (i.e., it is not a singular pair),34

the intersection of the nullspaces of such A and B must be trivial [54, Example VI.1.3].35

Some of the existing eigenvalue solvers, which operate with the indefinite inner product36

induced by B are indefinite Jacobi algorithms [25, 56], the Rayleigh quotient method [40], and37

indefinite Lanczos methods [4, 40]. Specifically, in this paper, we are interested in an iterative38

algorithm that computes a small number of eigenvalues closest to the definiteness interval39

(see Definition 3.4) and the corresponding eigenvectors. These eigenvalues are themselves40
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2 M. MILOLOŽA PANDUR

relevant in some applications such as computational quantum chemistry [5, 52]. Moreover,41

as we shall see, every spectral gap can be viewed as the definiteness interval of a related42

matrix pair. In this way, we devise an algorithm to compute the eigenvalues in an arbitrary43

interval of the spectrum. The class of algorithms we deal with are preconditioned gradient-44

type iterations, in a single vector and a block form, suitable for large and sparse matrices,45

previously studied for the case in which A and/or B are known to be positive definite; for a46

survey of preconditioned iterations we refer to [4, 32]. An indefinite variant of the locally47

optimal block preconditioned conjugate gradient method (the LOBPCG method proposed by48

Knyazev in [33]) is suggested by Kressner, Miloloža Pandur, and Shao in [38]. In this paper,49

we propose some new preconditioned eigensolvers suitable for a definite matrix pair with50

indefinite matrices that can be interpreted as a truncated and extended version of the indefinite51

LOBPCG [38]. For the truncated version of the indefinite locally optimal preconditioned52

conjugate gradient (LOPCG) method (this method is LOBPCG with block size one, that is,53

a single vector version), which we call the indefinite preconditioned steepest descent/ascent54

(PSD/A), we derive sharp convergence estimates.55

This paper is organized as follows. In Section 2, we give a short review of two important56

preconditioned gradient iterations for a GEP Ãx = λ̃Bx with Ã positive definite. In Section 3,57

we give a unifying framework of preconditioned gradient iterations for a definite GEP (1.1)58

with indefinite B called an indefinite variant of the (m)-scheme. Section 4 contains sharp59

convergence estimates for the simplest variants from the indefinite variant of the (m)-scheme.60

In Section 5, we devise some possibilities of using our algorithm to compute a modest number61

of eigenvalues around any spectral gap of a definite matrix pair. Numerical examples are62

given in Section 6. Section 7 contains some concluding remarks.63

Notation. In (or simply I when the dimension is clear from the context) denotes the n× n64

identity matrix. A � 0 (A � 0) means that A is a Hermitian positive (semi)definite matrix.65

A ≺ 0 (A � 0) if −A � 0 (−A � 0). For a given A � 0, ‖ · ‖A denotes a matrix norm66

induced by the vector norm ‖x‖A =
√
xHAx. In(B) denotes the inertia of a Hermitian matrix67

B, that is, it is defined as the triple containing the number of positive, negative, and zero68

eigenvalues of B. A sub- and superscript +, − of some scalar, vector or an iteration name69

refer to the corresponding B-positive and B-negative property, respectively.70

2. Preliminaries. Let Ã, B ∈ Cn×n be Hermitian and let Ã be positive definite. We
briefly review two known preconditioned gradient iterations for finding the smallest eigenvalue
and the corresponding eigenvector of the GEP

(2.1) Ãx = λ̃Bx.

Let

ρ̃(x) =
xHÃx

xHBx
, xHBx 6= 0,

denote the Rayleigh quotient associated with the matrix pair (Ã, B). When B is indefinite, it is
convenient [33, 45] to consider the dual GEP Bx = µ̃Ãx with µ̃ = 1/ρ̃ and to find the largest
eigenvalue and the corresponding eigenvector. Let x(i) denote the current approximation of the
eigenvector corresponding to the smallest eigenvalue of (2.1). For a given Hermitian matrix
T ∈ Cn×n, called the preconditioner (usually, T = Ã−1 or T ≈ Ã−1), the preconditioned
steepest descent (PSD) [21, 29, 30] iteration takes the following form

(2.2) x(i+1) = x(i) − τ (i)T (Ãx(i) − ρ̃(x(i))Bx(i)),
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where the scalar iteration parameter τ (i) is chosen such that ρ̃(x(i+1)) is minimized. The
LOPCG iteration [31] takes the following form

(2.3) x(i+1) = x(i) − γ(i)x(i−1) − τ (i)T (Ãx(i) − ρ̃(x(i))Bx(i)),

where the scalar iteration parameters γ(i) and τ (i) are chosen such that ρ̃(x(i+1)) is minimized.71

The preconditioned residual w(i) := Tr(i), where r(i) := Ãx(i)− ρ̃(x(i))Bx(i) is obtained by72

solving the linear system T−1w(i) = r(i). In the finite element discretization of a self-adjoint73

and elliptic partial differential operator, a symmetric positive definite geometric or algebraic74

multigrid V-cycle preconditioner is commonly used. According to Neymeyr, “typically,75

symmetric positive definite multigrid preconditioners can be realized with only linearly76

increasing computational costs (optimal complexity) and, at best, convergence rates can be77

guaranteed which do not depend on the mesh size” [44, p. 4]. Also; see [35].78

PSD and LOPCG iterations are preconditioned gradient iterations since for the given
preconditioner T they use the T -gradient of ρ̃. The T -gradient reads

∇T ρ̃(x) := T∇ρ̃(x), where ∇ρ̃(x) =
2(Ãx− ρ̃(x)Bx)

xHBx
.

The current residual Ãx− ρ̃(x)Bx is collinear with the gradient ∇ρ̃(x), which explains the79

term “gradient” in a gradient iteration. Therefore, the PSD iteration computes a sequence80

of iterates with decreasing Rayleigh quotients by successive corrections in the negative T -81

gradient direction of the current iterate. LOPCG additionally contains the optimal direction of82

the previous iterate.83

The connection between a three-term recurrence of the LOPCG iteration (2.3) and a three-84

term recurrence of the standard linear preconditioned conjugate gradient method (PCG) [49],85

is pointed out in [33, p. 523]. Numerical experiments in [33, Section 7] demonstrate a similar86

behaviour of the two mentioned methods when the preconditioners and initial approximations87

are the same in both methods.88

REMARK 2.1. The best possible scalar iteration parameters τ (i) and γ(i) in PSD itera-89

tion (2.2) and LOPCG iteration (2.3) are not found by using some optimization method. They90

are given only implicitly. If x is an eigenvector, then so is αx, α 6= 0; so what we really want91

to find is a direction of the next iterate. From (2.2) and (2.3) we see that the next iterate x(i+1)
92

is in the subspace span[x(i), w(i)] and span[x(i), x(i−1), w(i)], respectively. Therefore, the93

best approximations for eigenpairs from the subspace are given through the Rayleigh–Ritz94

procedure [48]. Therefore, (x(i+1), ρ̃(x(i+1))) is a Ritz pair of the matrix pair (Ã, B) with95

respect to the given subspace. As PSD (LOPCG) aims at minimizing of the Rayleigh quotient,96

ρ̃(x(i+1)) is a smaller (the smallest) Ritz value and x(i+1) is the associated Ritz vector.97

If we want to find several smallest eigenpairs of GEP (2.1), then we can use the block98

(or subspace) versions of iterations (2.2) and (2.3): block preconditioned steepest descent99

(BPSD) and LOBPCG [32, 33], respectively. Standard preconditioned gradient iterations, such100

as BPSD and LOBPCG, operate with an inner product induced by a positive definite matrix101

and aim to compute the smallest or the largest eigenvalues (the extremal eigenvalues) and the102

corresponding eigenvectors. These iterations can be modified in a natural way to compute the103

eigenvalues around the definiteness interval (which can be in the middle of the spectrum) and104

the corresponding eigenvectors of a definite matrix pair with indefinite matrices. Therefore,105

they operate with an indefinite inner product. Indefinite variants of LOBPCG are suggested106

in [38]. Here we propose the whole class of indefinite variants of preconditioned gradient107

iterations in Section 3, which includes indefinite LOBPCG methods [38, Algorithms 1 and 2].108
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3. An indefinite variant of the (m)-scheme of preconditioned gradient iterations.109

In this section, we propose a new class of preconditioned gradient iterations for definite matrix110

pairs (A,B) with indefinite B. Therefore, we use the indefinite inner product induced by B.111

A vector x ∈ Cn is called B-positive, B-negative, and B-neutral if xHBx > 0, xHBx < 0,112

and xHBx = 0, respectively. A vector x is B-normalized if |xHBx| = 1. We call vectors xi113

and xj B-orthogonal if xHi Bxj = 0 and B-orthonormal if |xHi Bxj | = δij , where δij is the114

Kronecker delta symbol.115

DEFINITION 3.1. Let A,B ∈ Cn×n. A matrix pair (A,B) is called a Hermitian matrix116

pair if both A and B are Hermitian. A Hermitian matrix pair (A,B) is called positive117

(negative) definite if there exists a real λ0 such that A− λ0B is positive (negative) definite.118

REMARK 3.2. Recall that a Hermitian matrix pair (A,B) is definite (e.g., [40]) if there119

exist real constants α, β such that αA+ βB is a positive definite matrix. In this case, if α 6= 0,120

then (A,B) is a positive or negative definite pair with λ0 = −β
α ; if α = 0, then β 6= 0, and B121

is either a positive or negative definite matrix. If the pair (A,B) is positive definite, then the122

pair (−A,B) is negative definite, so from now on we deal only with positive definite matrix123

pairs.124

A definite matrix pair can be diagonalized by a congruence transformation. The following125

theorem reveals the natural structure of a positive definite matrix pair.126

THEOREM 3.3. [39, 42] Let (A,B) be a positive definite matrix pair of order n such127

that B has inertia In(B) = (n+, n−, n0).128

i) There exists a nonsingular W such that

WHAW =

Λ+

−Λ−
In0

 , WHBW =

In+

−In−

0n0

 ,
where Λ+ := diag(λ+1 , . . . , λ

+
n+

), Λ− := diag(λ−1 , . . . , λ
−
n−

) with

(3.1) λ−n−
≤ · · · ≤ λ−1 < λ+1 ≤ · · · ≤ λ+n+

.

ii) (A,B) has only real finite eigenvalues and the number of finite eigenvalues is129

rank(B) = n+ + n−. Each eigenvalue λ+j , λ−j has an eigenvector x that satis-130

fies xHBx = 1 and xHBx = −1, respectively.131

iii) A− λ0B is positive definite for every λ0 ∈ (λ−1 , λ
+
1 ) and nowhere else.132

Note that the definiteness of the pair (A,B) precludes defective eigenvalues. Therefore,133

since every eigenvalue λ+j has a B-positive eigenvector, λ+j is called a B-positive eigenvalue.134

Similar holds for λ−j . Any eigenvector x belonging to a finite eigenvalue of (A,B) cannot be135

B-neutral, so we can always B-normalize x. Eigenvectors belonging to different eigenvalues136

are B-orthogonal. Theorem 3.3 justifies the following definition.137

DEFINITION 3.4. Let A− λ0B be positive definite, where (A,B) is a given Hermitian138

pair. The set of all such λ0 is an open interval called the definiteness interval [57], and every139

such λ0 is called a definitizing shift.140

The following lemma guarantees a basic property of our algorithm.141

LEMMA 3.5. [38, Section 2] Let B ∈ Cn×n be Hermitian, and consider a partitioned
matrix U = [X, Y ] ∈ Cn×p. Moreover, let In(XHBX) =: (k+, k−, k0) and In(UHBU) =:
(p+, p−, p0). Then

k+ ≤ p+, k− ≤ p−.

Now we briefly give the theoretical background for our algorithm [38, Section 2]. Let
A,B ∈ Cn×n be Hermitian such that B has inertia In(B) = (n+, n−, n0) and let (A,B) be
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a positive definite matrix pair with finite eigenvalues (3.1) and infinite eigenvalues

(3.2) λ∞i :=∞ for i = 1, . . . , n0.

Now, the definiteness interval equals (λ−1 , λ
+
1 ). Let U ∈ Cn×p have full column rank.

Then the projected matrix pair (UHAU,UHBU) is also positive definite [38, Theorem 2.3];
hence its finite eigenvalues are real and can be ordered as follows:

θ−p− ≤ · · · ≤ θ
−
1 < θ+1 ≤ · · · ≤ θ+p+ ,

with In(UHBU) = (p+, p−, p0). The eigenvalue interlacing properties [38, Theorem 2.3]
hold

λ+i ≤ θ
+
i ≤ λ

+
i+n−p for i = 1, . . . , p+,(3.3a)

λ−j ≥ θ
−
j ≥ λ

−
j+n−p for j = 1, . . . , p−,(3.3b)

where we formally set λ+i =∞ for i > n+ and λ−j = −∞ for j > n−. Let

Jk :=

[
Ik+

−Ik−

]
for some integers k+, k− satisfying (k+, k−, 0) ≤ In(B), where the inequality is understood
elementwise. Now assume (k+, k−, 0) ≤ In(UHBU). Then applying the trace minimization
principle [37, 42] to (A,B) and (UHAU,UHBU), and using the eigenvalue interlacing
properties (3.3) we have

min
X ∈ Cn×k

XHBX = Jk

trace (XHAX) =

k+∑
i=1

λ+
i −

k−∑
j=1

λ−j(3.4a)

≤
k+∑
i=1

θ+i −
k−∑
j=1

θ−j(3.4b)

= min
Y ∈ Cp×k

Y H(UHBU)Y = Jk

trace
(
Y H(UHAU)Y

)
,(3.4c)

with equality if and only if U is spanned by the eigenvectors of the pair (A,B) belonging to142

λ+1 , . . . , λ+k+ and λ−1 , . . . , λ−k− . These eigenvectors are columns in the minimizing matrix143

Xmin of the function in (3.4a).144

For small given integers k±, our aim is to determine the minimum and the minimizing
matrixXmin of the function given in (3.4a), that is, to find the k+ smallestB-positive eigenval-
ues λ+1 , . . . , λ+k+ , the k− largest B-negative eigenvalues λ−1 , . . . , λ−k− , and the corresponding
eigenvectors of the positive definite pair (A,B). Considering (3.4), we find approximations
of the wanted eigenpairs from the chosen subspace U = spanU by using the Rayleigh–Ritz
procedure. We compute all eigenpairs of the small projected pair (UHAU,UHBU) and
extract only those around its definiteness interval θ±j , j = 1, . . . , k± and the corresponding
eigenvectors y±j , j = 1, . . . , k±. These eigenvectors are assumed to be normalized such that

Y H(UHBU)Y = Jk, where Y = [y+k+ , . . . , y
+
1 , y

−
1 , . . . , y

−
k−

].

The Ritz pairs of the matrix pair (A,B) with respect to the subspace U are then given by145

(θ±j , Uy
±
j ), j = 1, . . . , k±. Therefore, the matrix X := UY of the Ritz vectors has B-146

orthonormal columns.147
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Algorithm 3.1 An indefinite variant of the (m)-scheme with one preconditioner, m ≥ 2

Input: A, B ∈ Cn×n: coefficients of a positive definite pair (A,B) with indefinite B;
T ∈ Cn×n: Hermitian positive definite preconditioner;
X(0) ∈ Cn×k: initial guess such that (k+, k−, 0) ≤ In

[
(X(0))HBX(0)

]
.

Output: `+ ≤ k+ smallest B-positive eigenpairs and `− ≤ k− largest B-negative eigenpairs.

1: B-orthonormalize X(0).
2: Apply the Rayleigh–Ritz procedure to (A,B) with respect to the subspace spanX(0),

and let Θ(0) be the diagonal matrix containing the wanted Ritz values.
3: Initialization: If m ≥ 3, then compute an initial sequence of m − 2 matrices
X(1), . . . , X(m−2) by executing single steps of the (j)-scheme with the initial sequence
X(0), . . . , X(j−2) for j = 2, . . . ,m− 1.

4: Iteration:
5: for i = m− 2, m− 1, m, . . . do
6: Compute preconditioned residual W (i) ← T (AX(i) −BX(i)Θ(i)).
7: if all desired eigenvalues are converged then
8: Exit loop.
9: end if

10: Set the subspace U (i) ← spanU (i) = span
[
X(i),W (i), X(i−1), . . . , X(i−m+2)

]
.

11: B-orthonormalize U (i).
12: Apply the Rayleigh–Ritz procedure to (A,B) with respect to the subspace U (i) and let

X(i+1) be the matrix of the Ritz vectors corresponding to k+ smallest B-positive and
k− largest B-negative Ritz values and let Θ(i+1) be the diagonal matrix containing the
wanted Ritz values.

13: end for

Now we need to specify a subspace U , which can be chosen in many ways. An indefinite
variant of the (m)-scheme with one preconditioner is presented in Algorithm 3.1, similarly
to a unifying framework suggested in [43, 44] for a class of preconditioned gradient type
eigensolvers for computing the smallest eigenpair of a GEP with real symmetric positive
definite matrices. Let

X(0), . . . , X(m−2) ∈ Cn×k, k = k+ + k−,

be an initial sequence of matrices of approximations of the wanted eigenvectors with m ≥ 2 a
small fixed integer. In the ith (i ≥ m− 2) iteration of Algorithm 3.1 we consider the subspace

(3.5) U (i) = spanU (i) := span
[
X(i),W (i), X(i−1), X(i−2), . . . , X(i−m+2)

]
,

(a matrix X(−j) is an empty matrix) with the preconditioned residual matrix

W (i) := T ·R(i) = T ·
(
AX(i) −BX(i)Θ(i)

)
for some Hermitian positive definite matrix T ∈ Cn×n and

Θ(i) :=
(
(X(i))HBX(i)

)−1
(X(i))HAX(i).

Notice that the dimension of the subspace U (i) is not larger than mk for all i = 0, 1, 2, . . ..148

Every new subspace U (i) in Algorithm 3.1 contains column vectors of the current iteration149

matrix X(i) containing Ritz vectors. Therefore, the eigenvalue interlacing properties guarantee150
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θ
+(i+1)
j ≤ θ+(i)

j , j = 1, . . . , k+, that is, the B-positive Ritz values are monotonically decreas-151

ing, and θ−(i)j ≤ θ−(i+1)
j , j = 1, . . . , k−, that is, theB-negative Ritz values are monotonically152

increasing for any preconditioner, not necessarily positive definite. Therefore, our iteration153

method is trace-reducing and robust with respect to the choice of the preconditioner.154

An indefinite LOBPCG method with one preconditioner [38, Algorithm 1] coincides with155

Algorithm 3.1 with m = 3.156

We now give some remarks on the use and implementation of Algorithm 3.1, similarly
to [38, Section 3.1]. The user chooses m ≥ 2, which determines the dimension of the search
subspace.
Initial guess. The user needs to give an initial guess X(0) such that

In
(
(X(0))HBX(0)

)
= (k+, k−, k0) ≥ (`+, `−, 0)

holds (the inequality is understood elementwise), where `+ (`−) denotes the number of
the wanted smallest B-positive (largest B-negative) eigenpairs. The inequality k± ≤ p±
for In

(
(U (i))HBU (i)

)
= (p+, p−, p0) holds for all iterations; follows by induction from

Lemma 3.5. Notice that p+ and p− may vary during the iterative process. Hence we need
precise information about the number of eigenvalues for both types in the projected problem
in order to extract the desired Ritz values. This is quite different compared to the standard
LOBPCG algorithm, in which the desired Ritz values are always the smallest ones. Fortunately,
we have knowledge about p+ and p− since the inertia of (U (i))HBU (i) is available as a
byproduct of the B-orthogonalization procedure; see below.
When B has a particular structure, as in many applications, choosing such an initial guess is
straightforward; see Examples 6.1–6.3.
We allow X(i) to have more than `+ B-positive and more than `− B-negative columns, which
can be useful when we have a cluster of eigenvalues. In this way, the dimension of the search
subspace is bigger, which can lead to faster convergence.
Initialization. The current subspace U (i) depends on the span of m − 2 matrices of the
previous Ritz vectors. Therefore, if m ≥ 3, we need to compute these matrices before
proceeding with the iteration. For example, if m = 4, we need to compute an initial sequence
of two matricesX(1), X(2) by executing single steps of the indefinite variant of the (j)-scheme
with the initial sequence X(0), X(j−2) for j = 2, 3. This means that we execute only the first
iteration step (i = 0) of the (2)-scheme to get X(1) from span[X(0),W (0)]. Then, we execute
only the first iteration step (i = 1) of the (3)-scheme to get X(2) from span[X(1),W (1), X(0)].
Finally, we can proceed with the iteration in the (4)-scheme, where in the first iteration step
(i = 2) we have span[X(2),W (2), X(1), X(0)].
Choosing the basis. The natural basis [X(i),W (i), X(i−1)] for U (i) in the indefinite LOBPCG
method (as in the standard LOBPCG method) is ill-conditioned. To improve numerical stability
a new basis is chosen [33, 38]: the matrix X(i−1) is replaced by the matrix P (i). The columns
of the matrix P (i) are given as an implicit difference of the corresponding columns of the
matrices X(i) and X(i−1). More precisely, let the 3k×k matrix Y (i+1) containing the desired
eigenvectors of the projected pair ((U (i))HAU (i), (U (i))HBU (i)) be partitioned as

Y (i+1) =

[
Y

(i+1)
1

Y
(i+1)
2

]
, Y

(i+1)
1 ∈ Ck×k, Y

(i+1)
2 ∈ C2k×k.

Update (P (0) ← [])

P (i+1) ← [W (i), X(i−1)]Y
(i+1)
2 , X(i+1) ← X(i)Y

(i+1)
1 + P (i+1).
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Since P (i+1) = X(i+1) − X(i)Y
(i+1)
1 , then in the indefinite variant of the (m)-scheme157

we use the new basis [X(i),W (i), P (i), P (i−1), . . . , P (i−m+3)] instead of the natural basis158

[X(i),W (i), X(i−1), X(i−2), . . . , X(i−m+2)].159

B-orthonormality. The Ritz pairs extracted from the subspace U (i) do not depend on the160

choice of the basis. For the standard LOBPCG method it has been observed that choosing an161

orthonormal basis leads to improved numerical stability [18, 26]. In [38], the authors made a162

similar observation when choosing a B-orthonormal basis in the indefinite LOBPCG method.163

We prefer B-orthonormalization rather than standard orthonormalization (in the Euclidean164

inner product) in our algorithm for the following reasons. The first reason is the natural165

structure of the GEP we are interested in: since the eigenvectors corresponding to different166

eigenvalues of a definite matrix pair are B-orthogonal, we would like the approximations167

of the wanted eigenvectors (in our algorithm, these are Ritz vectors) to be B-orthogonal as168

well. Furthermore, we want to solve the trace minimization problem (3.4), where we have the169

B-orthonormality property XHBX = diag(±1). Once the basis has been constructed, we170

form the projected pair ((U (i))HAU (i), (U (i))HBU (i)), where, in general, (U (i))HAU (i) is171

a full matrix, and in theory (U (i))HBU (i) = diag(±1). Therefore, we can apply the J-Jacobi172

method of Veselić [56] to the small projected pair.173

The B-orthonormalization process [38, Section 3.1] needs to be implemented carefully
to avoid numerical instability. Notice that this process in not always possible due to the
existence of B-neutral vectors. Further, for a vector close to a B-neutral vector, forcing
B-normalization will lead to a large growth factor. To avoid that, we can use a preprocessing
step [38, Section 3.1] and drop the problematic vectors from the basis; see also the discussion
in [18, Section 4.1] for the standard LOBPCG. By Lemma 3.5, when orthogonalizing U (i)

from (3.5) with (X(i))HBX(i) = diag(±1), the output U (i)
drop can be chosen of the form

[X(i), Z(i)] (consequently, we have rank(X(i)) ≤ rank(U
(i)
drop) ≤ rank(U (i))), which is

enough for a search subspace as long as Z(i) contains some columns to keep the algorithm
working. If too many columns must be dropped, the basis can be padded with randomly
generated B-orthogonalized columns.
Deflation. A Ritz pair is deflated after it has converged to the desired accuracy. In our
algorithm, we use a “deflate from the middle” strategy: a Ritz value θ±j (here we drop the
superscript (i) for clarity) is deflatable if and only if all Ritz values θ±i , with 1 ≤ i ≤ j − 1,
are deflatable and∗

(3.6) ‖r±j ‖2 := ‖Ax±j − θ
±
j Bx

±
j ‖2 ≤ tol · |θ±j | ‖B‖2‖x

±
j ‖2,

where x±j := Uy±j is the corresponding Ritz vector and tol is a tolerance specified by the174

user. Deflated Ritz vectors, as in the standard LOBPCG method [34], do not participate in175

the computation of W (i) or P (j), j = i −m + 3, . . . , i, but they still need to participate in176

the B-orthonormalization process to avoid repeated convergence to the same eigenvalue. The177

bound (3.6) is used in a backward error analysis of approximate eigenpairs [38, Section 3.4].178

For large sparse matrices an estimate of the 2-norm is used. We refer to [18, Section 4] for179

this issue. The 1-norm of the matrix can also be used; see, e.g., [41] for a hyperbolic quadratic180

eigenvalue problem.181

Preconditioner. The preconditioned residuals (here we drop the superscript (i) for clarity)182

w±j := Tr±j are obtained by solving linear systems T−1w±j = r±j for j = 1, . . . , k±. Usually,183

these systems are solved only approximately by some iterative method such as the linear184

∗Although we use a superscript + (−) in a residual r+j (r−j ), this does not imply that r+j (r−j ) is B-positive

(B-negative). Similar holds for a preconditioned residual w±j .
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conjugate gradient method (CG) [17] with a low drop tolerance. Ideally, one application of a185

preconditioner to a residual vector has the same costs as one matrix-vector product. We use186

a Hermitian positive definite preconditioner T for three reasons. Since we want to compute187

the interior eigenvalues around the definiteness interval, we use a definitizing shift λ0 for188

which the matrix A − λ0B is positive definite, and therefore we use a Hermitian positive189

definite preconditioner T = (A− λ0B)−1 or T ≈ (A− λ0B)−1. The second reason is the190

efficiency of a positive definite preconditioner such as a symmetric positive definite multigrid191

preconditioner used in the discretization of an elliptic PDE-eigenproblem. The third reason192

lies in the fact that the convergence analysis (see Section 4.1) is given only for a symmetric193

positive definite preconditioner. Since our Algorithm 3.1 is robust with the choice of the194

preconditioner, we can even choose the shift λ0 outside of the definiteness interval, which195

results in an indefinite preconditioner [33], [38, Example 5.2].196

TABLE 3.1
An indefinite variant of the (m)-scheme for m = 2 and m = 3.

m k− k+ Eigensolver m k− k+ Eigensolver
2 1 0 PSA− 2 0 1 PSD+

2 > 1 0 BPSA− 2 0 > 1 BPSD+

3 1 0 LOPCG− 3 0 1 LOPCG+

3 > 1 0 LOBPCG− 3 0 > 1 LOBPCG+

2 1 1 indefinite PSD/A 3 1 1 indefinite LOPCG
2 > 1 > 1 indefinite BPSD/A 3 > 1 > 1 indefinite LOBPCG

In Table 3.1, we appoint an eigensolver for m = 2 and m = 3 from our algorithm. The197

names of our methods point to a strong relationship with existing methods for the partial GEP198

for a matrix pair (A,B) with positive definite B. The abbreviation BPSA stands for the block199

(or subspace) preconditioned steepest ascent iteration. In our methods, superscripts + and −200

mean that iterations operate not on the whole Euclidean space, but only on the B-positive and201

B-negative subsets, respectively.202

During the past few years several variants of extended (B)PSD/A and LO(B)PCG type
methods were proposed for nonlinear Hermitian eigenvalue problems with variational charac-
terizations [9, 41, 55]. The mentioned eigenvalue problems include definite matrix pairs. A
so-called interval of definite type: positive† or negative [55, Definition 2.1, Proposition 2.4]
is chosen. Then, in a single vector version, the algorithms in [9, 41, 55] compute the small-
est (or the largest) eigenvalue in that interval and the corresponding eigenvector. In block
versions, the algorithms compute a few smallest (or largest) eigenvalues in that interval and
the corresponding eigenvectors. Our Algorithm 3.1 with k± ≥ 1 simultaneously computes
the eigenvalues on both sides of the definiteness interval and the corresponding eigenvectors
of a positive definite matrix pair. Algorithm 3.1 with m = 2, 3 and k+ ≥ 1 and k− = 0, or
k+ = 0 and k− ≥ 1, coincides with the corresponding algorithms in [9, 55]. For example, our
LOPCG+ with k+ = 1 coincides with [9, Algorithm 2.1, LOCG(1,2), with a fixed precondi-
tioner and F (λ) = λB −A]. The mentioned extended variants of (B)PSD/A and LO(B)PCG
type methods in [9, 41], as discussed in [22, 50, 51], mean that, for example in PSD (2.2),
the search subspace span[x(i), T (Ã− ρ̃(x(i))B)x(i)] is replaced with the meth order Krylov
subspace (usually with a small me; here ρ̃(i) := ρ̃(x(i)))

Kme(T (Ã− ρ̃(i)B);x(i)) := span
[
x(i), T (Ã− ρ̃(i)B)x(i), . . . , (T (Ã− ρ̃(i)B))me−1x(i)

]
.

†For example, (λ0,∞) is an interval of positive type of a positive definite matrix pair, where λ0 is a definitizing
shift.
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The global convergence of the method using Kme(T (Ã− ρ̃(i)B);x(i)) as a search subspace203

with T = I to some eigenvalue of a definite matrix pair (Ã, B) with B � 0 is proven in [22,204

Theorem 1]. The global convergence of the LOPCG type method to the extremal eigenpair,205

for a general Hermitian matrix polynomial with variational characterizations, without any206

assumption on a preconditioner (including variable preconditioners), is proven in [9, Theorem207

2.1]. In particular, an asymptotic estimate for our indefinite LOPCG+ method with a fixed208

positive definite preconditioner is given in [9, Theorem 3.1, LOCG(1,2)].209

It is natural to expect (as confirmed by our convergence analysis from Section 4.1) that
the eigenvalues closest to the definitizing shift λ0 converge first. Since we want to compute the
eigenvalues around the definiteness interval, to be more efficient, we can use two definitizing
shifts, i.e., λ+0 close to λ+1 and λ−0 close to λ−1 . Therefore, we can use two preconditioners
T+ ≈ (A− λ+0 B)−1 and T− ≈ (A− λ−0 B)−1, exactly as in [38, Algorithm 2], and get an
indefinite variant of the (m)-scheme with two preconditioners. To preserve the dimension of
the search subspace, we use

U (i) := span
[
X(i), T+ ·R(i)

+ , T− ·R(i)
− , X

(i−1), . . . , X(i−m+2)
]

as a new subspace, where we split the residual matrix R(i) into two parts R(i)
+ and R(i)

−210

associated with B-positive Ritz values and B-negative Ritz values, respectively.211

4. The simplest variants: PSD+ and PSA−. In this section, we consider the simplest212

variants in Algorithm 3.1, namely PSD+ and PSA−. When B is positive definite, then the PSD213

(PSA) iteration aims to compute the smallest (the largest) eigenvalue and the corresponding214

eigenvector of a matrix pair (A,B). If B � 0, then PSD = PSD+; if B ≺ 0, then PSA =215

PSA−. Therefore, when B is indefinite, as in our case, the PSD+ (PSA−) iteration aims to216

compute the smallest (the largest) B-positive (B-negative) eigenvalue and the corresponding217

eigenvector. To give convergence theorems for our methods PSD+ and PSA−, we use the218

convergence theorem [45] derived for the PSD iteration that is proven only for real symmetric219

matrices. Therefore, only in this section we assume that A and B are real and symmetric.220

Let

ρ(x) =
xTAx

xTBx
, xTBx 6= 0,

denote the Rayleigh quotient associated with a positive definite matrix pair (A,B). The single221

vector iteration PSD+ (replacing X(i), W (i), and X(i+1) by x+, w+, and x′+, respectively)222

uses the subspace U (i) = span[x+, w+] in the ith iteration step‡. A Ritz pair of (A,B) with223

respect to the subspace U (i) is (x′+, ρ(x′+)), where ρ(x′+) is the smaller B-positive Ritz value.224

Similar holds for the PSA− iteration.225

REMARK 4.1. The indefinite PSD/A iteration combines the PSD+ and the PSA− it-226

erations into one iteration method by using the subspace U (i) = span[X(i),W (i)], where227

X(i) = [x+, x−] contains the current approximations of the wanted eigenvectors correspond-228

ing to λ+1 and λ−1 . The subspace U (i) in Algorithm 3.1 with m = 3 and k± = 1, that is, the229

indefinite LOPCG iteration, additionally contains the column space of the previous iterate.230

Therefore, the indefinite PSD/A iteration can be interpreted as a truncated version of the231

indefinite LOPCG iteration. Similarly, higher order schemes in Algorithm 3.1 with m > 3 and232

k± = 1, can be interpreted as an extended version of the indefinite LOPCG method. Similar233

holds for the block versions.234

‡If x+ and w+ are linearly dependent, then the iteration terminates in the current iterate x+.
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4.1. Convergence theorems for PSD+ and PSA−. A sharp convergence theorem for235

the standard PSD iteration applied to a real symmetric matrix pair (Ã, B), where Ã is positive236

definite, is given in [45], using the dual matrix pair (B, Ã). To give corresponding convergence237

theorems for eigenvalues around the definiteness interval of a positive definite matrix pair238

(A,B) with indefinite B computed by PSD+ and PSA−, we need to present them as the239

extremal eigenvalues of some auxiliary matrix pair.240

Consider a positive definite matrix pair (A,B) with eigenvalues (3.1), (3.2). Let λ0 be a
given definitizing shift and let

Ã = A− λ0B � 0, λ̃ = λ− λ0 6= 0.

Hence for the eigenproblem

Bx = µ̃Ãx(4.1)

the eigenvalues {µ̃} are given by

µ̃ = 1/λ̃ = 1/(λ− λ0)

and arranged in the order:

1/λ̃−1 ≤ · · · ≤ 1/λ̃−n− < 0 = 1/λ̃∞1 = · · · = 1/λ̃∞n0
< 1/λ̃+n+

≤ · · · ≤ 1/λ̃+1
q q q q
µ̃−1 ≤ · · · ≤ µ̃−n− < 0 = µ̃∞1 = · · · = µ̃∞n0

< µ̃+n+
≤ · · · ≤ µ̃+1

.

Let

(4.2) µ̃(x) =
xTBx

xT Ãx
=

1

ρ(x)− λ0
∈ R, x 6= 0,

denote the Rayleigh quotient associated with the matrix pair (B, Ã) from (4.1). Therefore, the
goal of the PSD+ iteration is equivalent to compute the largest eigenvalue µ̃+

1 by maximizing
µ̃(x) from (4.2), and the corresponding eigenvector. Similar holds for the PSA− iteration.
Since we want to compute extremal eigenvalues µ̃+

1 and µ̃−1 , we can use the PSDµ̃ (4.3)
iteration and then apply [45, Theorem 2.2] to the matrix pair (B, Ã) and (−B, Ã) from (4.1),
respectively. The transformation of the PSD iteration (2.2) (after multiplication by µ̃(x) =
1/ρ̃(x), replacing x(i+1), x(i), and τ (i) by x′, x, and τopt, respectively) is

(4.3a) (PSDµ̃) µ̃(x)x′ = µ̃(x)x+ τoptT (Bx− µ̃(x)Ãx)

with the optimal step length

(4.3b) τopt := arg max
τ∈R

µ̃
(
µ̃(x)x+ τT (Bx− µ̃(x)Ãx)

)
.

For a symmetric positive definite matrix T , a preconditioner, which approximates the
inverse of the positive definite Ã one assumes [45, Section 1.1]

(4.4) ‖I − TÃ‖Ã ≤ γ, γ ∈ [0, 1).

Neymeyr gives a convergence estimate of the poorest possible convergence of the PSD241

iteration (2.2) in [45, Theorem 1.2]; the proof of that theorem takes 12 pages. That estimate is242

sharp in the sense that an initial guess and a preconditioner T satisfying the inequality (4.4)243

can be chosen such that the bound is attained. [45, Theorem 1.2] guarantees the monotone244
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convergence of a sequence of the Ritz values to some eigenvalue; to the smallest eigenvalue245

only if the Ritz values have reached the final interval [λ1, λ2), but, due to roundoff, in practice246

that sequence almost surely converge to the smallest eigenvalue. A similar convergence247

theorem for the PSD+ and PSA− iteration is as follows:248

THEOREM 4.2. Let x+ ∈ Rn and x′+ be the PSD+ iterate. The preconditioner T is
assumed to satisfy (4.4). If λ+i ≤ ρ(x+) < λ+i+1, i = 1, . . . , n+ − 1, then ρ(x′+) ≤ ρ(x+)

and either ρ(x′+) ≤ λ+i or

ρ(x′+)− λ+i
λ+i+1 − ρ(x′+)

≤ σ2
i,+

ρ(x+)− λ+i
λ+i+1 − ρ(x+)

(4.5)

with σi,+ :=
κi,+ + γ(2− κi,+)

(2− κi,+) + γκi,+
and κi,+ :=

(λ+i − λ0)(λ−1 − λ
+
i+1)

(λ+i+1 − λ0)(λ−1 − λ
+
i )
.

The estimate is sharp and can be attained for ρ(x+)→ λ+i in the three-dimensional invariant249

subspace associated with the eigenvalues λ+i , λ+i+1, and λ−1 .250

Proof. The proof follows from [45, Theorem 2.2] applied to the matrix pair (B, Ã)251

from (4.1) with associated substitutions σ → σi,+, µ(x) → µ̃(x+) = 1/(ρ(x+) − λ0),252

(µn, µi+1, µi, µ1)→ (µ̃−1 , µ̃
+
i+1, µ̃

+
i , µ̃

+
1 ), µj → µ̃±j = 1/(λ±j − λ0), and κ→ κi,+.253

THEOREM 4.3. Let x− ∈ Rn and x′− be the PSA− iterate. The preconditioner T is
assumed to satisfy (4.4). If λ−i+1 < ρ(x−) ≤ λ−i , i = 1, . . . , n− − 1, then ρ(x′−) ≥ ρ(x−)

and either ρ(x′−) ≥ λ−i or

λ−i − ρ(x′−)

ρ(x′−)− λ−i+1

≤ σ2
i,−

λ−i − ρ(x−)

ρ(x−)− λ−i+1

(4.6)

with σi,− :=
κi,− + γ(2− κi,−)

(2− κi,−) + γκi,−
and κi,− :=

(λ−i − λ0)(λ+1 − λ
−
i+1)

(λ−i+1 − λ0)(λ+1 − λ
−
i )
.

The estimate is sharp and can be attained for ρ(x−)→ λ−i in the three-dimensional invariant254

subspace associated with the eigenvalues λ−i , λ−i+1, and λ+1 .255

Proof. The proof follows from [45, Theorem 2.2] applied to the matrix pair (−B, Ã)256

from (4.1) with associated substitutions σ → σi,−, µ(x)→ −µ̃(x−) = −1/(ρ(x−)− λ0),257

(µn, µi+1, µi, µ1)→ (−µ̃+
1 ,−µ̃

−
i+1,−µ̃

−
i ,−µ̃

−
1 ), µj → −µ̃±j = −1/(λ±j − λ0), and258

κ→ κi,−.259

For κ from [45, Theorem 2.2] holds κ ∈ (0, 1), which implies κi,± ∈ (0, 1). Since260

σi,+ = σi,+(γ, κi,+) is a monotone increasing function in both variables, choosing smaller γ261

(meaning a preconditioner T approaches to the exact inverse of Ã) and/or smaller κi,+ will262

lead to a faster convergence of the PSD+ iteration. Similar holds for the PSA− iteration.263

We now give an asymptotic estimate for (4.5). Provided that λ+1 ≤ ρ(x+) < λ+2 and (4.4)
holds, asymptotically, as ρ(x+) → λ+1 , we have (λ+2 − ρ(x′+))/(λ+2 − ρ(x+)) → 1 and
therefore

ρ(x′+)− λ+1
ρ(x+)− λ+1

. σ2
+

with σ+ := σ1,+ =
κ+ + γ(2− κ+)

(2− κ+) + γκ+
and κ+ := κ1,+ =

(λ+1 − λ0)(λ−1 − λ
+
2 )

(λ+2 − λ0)(λ−1 − λ
+
1 )
.

Therefore, our PSD+ iteration converges at least linearly with the asymptotic convergence264

factor σ2
+ that depends on the gap between λ+1 and λ0 relative to the gap between λ+2 and λ0,265
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and of course on γ: the quality measure of the preconditioner T . If λ+2 ≈ λ+1 , then κ+ ≈ 1266

leads to a slower convergence of the PSD+ iteration. Asymptotically, when λ0 → λ+1 , then267

κ+ → 0 and therefore σ+ → γ. Similar conclusions hold for (4.6).268

Corresponding convergence theorems for the block iterations BPSD+ and BPSA− can be269

derived from [47]. For practically important (indefinite) LO(B)PCG type methods there are still270

no sharp convergence estimates. Convergence theorems proven for the preconditioned inverse271

iteration (PINVIT) [36], PSD/A [45, 46, 47], our convergence theorems (for an indefinite272

case) can serve only as upper (non-sharp) estimates. Namely, the eigenvalue interlacing273

property implies that the Ritz value θ+1 (θ−1 ) computed in Algorithm 3.1 with m = 3 and274

k+ = 1, k− = 0 (k+ = 0, k− = 1) is at least as close to λ+1 (λ−1 ) as the Ritz value ρ(x′+)275

(ρ(x′−)) computed by PSD+ (PSA−) since the subspace of PSD+ and/or PSA− is contained276

in the subspace of Algorithm 3.1 with m = 3. Therefore, Algorithm 3.1 with m = 3 and277

k+ = 1, k− = 0 (k+ = 0, k− = 1) converges at least linearly with the asymptotic convergence278

factor σ2
+ (σ2

−).279

5. Arbitrary spectral gaps. Algorithm 3.1 (and its extension derived at the end of280

Section 3) simultaneously computes a few eigenvalues around the definiteness interval and the281

corresponding eigenvectors of a given positive definite matrix pair. However, the definiteness282

interval is just one special spectral gap. In this section, we derive some ideas how to use the283

trace-reducing Algorithm 3.1 to compute a few eigenvalues around any spectral gap and the284

corresponding eigenvectors of a definite pair (A,B).285

Let λmin denote the smallest and λmax the largest finite eigenvalue of some positive286

definite matrix pair (A,B) with finite eigenvalues (3.1) and let I0 denote its definiteness287

interval§. For the given arbitrary shift λa ∈ (λmin, λmax) \ I0 that is not an eigenvalue of288

(A,B), let Ia be the spectral gap around λa, that is, λa ∈ Ia and either Ia = (λ+i , λ
+
i+1), for289

some i ∈ {1, . . . , n+ − 1} or Ia = (λ−j+1, λ
−
j ), for some j ∈ {1, . . . , n− − 1}. The spectral290

gap around λa is defined analogously for a negative definite matrix pair.291

We want to simultaneously compute a small number of eigenvalues around the given shift292

λa, more precisely, the first jb eigenvalues that are bigger than λa, the first js eigenvalues that293

are smaller than λa, and the corresponding eigenvectors of a definite pair (A,B).We transform294

the pair (A,B) into some auxiliary positive definite matrix pair with the definiteness interval295

around zero and then use Algorithm 3.1 to compute jb + js eigenvalues around zero and the296

corresponding eigenvectors of that auxiliary pair, and consequently, the wanted eigenvalues297

around λa and the corresponding eigenvectors of the pair (A,B). We propose two ways to298

transform the given definite pair to some auxiliary one¶.299

Suppose first that B is positive definite and λa is from any desired spectral gap Ia. Now
the matrix pair (A− λaB,B) has the desired spectral gap I := Ia − λa around zero and its
eigenpair (µ, x) corresponds to the eigenpair (µ+λa, x) of the pair (A,B). As is immediately
verified, I is the definiteness interval of the positive definite pair

(5.1) (B−1, (A− λaB)−1),

which has the same eigenvalues as the pair (A− λaB,B), the eigenvectors are just multiplied
by B, and Algorithm 3.1 applies with `+ = jb, `− = js. Here, the preconditioned residual is
obtained by a matrix vector product since T = B. This case can be extended to any definite
pair with indefinite matrices and with the known definiteness interval, or, at least part of it. Let
λ0 be a definitizing shift of a positive definite pair (A,B) with indefinite A and B. Let λa be

§If B � 0, then I0 = (λmax,∞). If B � 0, then I0 = (−∞, λmin).
¶The author is indebted to Professor Krešimir Veselić for suggesting some of the ideas in the following, in

particular for using (5.1) and providing Theorem 5.1 below.
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from any desired spectral gap Ia of (A,B). We assume that λ0 and λa are not relatively close.
Then A − λ0B is positive definite and the eigenpair (λ, x) of the pair (A,B) corresponds
to the eigenpair (λ− λ0, x) of the pair (A− λ0B,B). Now we can apply the previous case
to the matrix pair (B,A− λ0B) in which the eigenpair (1/(λ− λ0), x) corresponds to the
eigenpair (λ, x) of the pair (A,B). First, move the spectrum of (B,A− λ0B) to the left by
1/(λa − λ0) , and then use the inverses. Therefore, I := 1/(Ia − λ0)− 1/(λa − λ0) is the
definiteness interval around zero of the positive definite pair

(5.2)
(

(A− λ0B)−1,
(
B − (λa − λ0)−1(A− λ0B)

)−1)
,

in which the eigenpair ( 1
λ−λ0

− 1
λa−λ0

, (A− λ0B)x) corresponds to the eigenpair (λ, x) of
the pair (A,B). Here, the preconditioned residual is obtained by a matrix vector product since
T = A− λ0B. After running Algorithm 3.1 with `+ = js, `− = jb (notice the change of the
roles of js and jb with this spectral transformation) on the pair (5.2), the computed eigenpair
(µ, y) of the pair (5.2) corresponds to the eigenpair( 1

µ+ (λa − λ0)−1
+ λ0, (A− λ0B)−1y

)
of the positive definite matrix pair (A,B) with indefinite A and B. A shortcoming of this way
is that we must know the inverses or at least be able to solve easily linear systems of the type

Bx = c and (A− λaB)x = c

for matrices in (5.1); and similarly for (5.2). There is another way, i.e., by using corresponding
decompositions of the matrices appearing in (5.1) and (5.2). We assume first for simplicity
B = I . Now make the indefinite decomposition ‖

(5.3) A− λaI = GJGH ,

where λa is taken from any spectral gap Ia of A and J is Hermitian nonsingular, that is,

(5.4) JH = J−1 = J

and G is a nonsingular lower block-triangular matrix with diagonal blocks of order 1 or 2. If300

J = I or J = −I , then λa < λmin and λa > λmax, respectively, that is, λa is not from any301

spectral gap. In this case, we can proceed, and at the end, compute the extremal eigenvalues,302

i.e., λmin or λmax and the ones closest to them. However, we are really interested in an303

indefinite J = diag(±1).304

Consider the auxiliary matrix pair (GHG, J). Due to (5.4), this pair has the same305

eigenvalues as the matrix A− λaI and it possesses a set of J-orthonormal eigenvectors. More306

precisely, we have the following theorem.307

THEOREM 5.1. Let A ∈ Cn×n be the given Hermitian matrix and let U ∈ Cn×p, p ≤ n,
have orthonormal columns spanning a spectral subspace of Aa := A− λaI , that is,

(5.5) AaU = UΛa,

‖An indefinite decomposition of a Hermitian matrix H is a decomposition of the form PHPH = LDLH ,
where L is a unit lower triangular matrix, D = DH is a block-diagonal matrix with diagonal blocks of order
1 or 2, and P is a permutation matrix. This decomposition is obtained by the variants of the Bunch–Parlett
decomposition [3, 11, 12, 13, 14, 16]. An additional diagonalization of the diagonal blocks in D and an appropriate
scaling of the columns of L results in a new decomposition PHPH = GJGH , where G is a nonsingular lower
block-triangular matrix with diagonal blocks of order 1 or 2, and J is a diagonal matrix of signs of the eigenvalues of
D (or, equivalently, of H) on its diagonal. We must pay attention to which pivoting strategy to use when performing
an indefinite decomposition; for a banded matrix a pivoting strategy needs to preserve the bandwidth during the
process [13, 15, 28].
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where Λa := Λ− λaIp, Λ ∈ Rp×p is a diagonal matrix containing some of the eigenvalues of
A. Set

F = G−1U |Λa|1/2 or, equivalently, U = GF |Λa|−1/2

with G, J from (5.3). Then

(5.6) FHJF = J ,

with J := sign(Λa) and

(5.7) GHGF = JFΛa,

that is, F spans the corresponding spectral subspace of the pair (GHG, J). Conversely, (5.7)308

and (5.6) imply (5.5) and the fact that U has orthonormal columns.309

Proof. Premultiply AaU = UΛa by A−1a and postmultiply by Λ−1a to obtain

(5.8) UΛ−1a = A−1a U.

Now,

FHJF = |Λa|1/2UHG−HJG−1U |Λa|1/2

= |Λa|1/2UHA−1a U |Λa|1/2

= |Λa|1/2UHUΛ−1a |Λa|1/2(5.9)

= |Λa|1/2Λ−1a |Λa|1/2 = J ,

with J = sign(Λa). (5.9) follows from (5.8). Further, premultiply (5.3) by JG−1 to obtain

(5.10) GH = JG−1Aa.

Now,

GHGF = GHGG−1U |Λa|1/2 = GHU |Λa|1/2

= JG−1AaU |Λa|1/2 = JG−1UΛa|Λa|1/2(5.11)

= JG−1U |Λa|1/2|Λa|−1/2Λa|Λa|1/2

= JFΛa.

(5.11) follows from (5.10) and (5.5).
Conversely, using (5.3), (5.7) and J2 = I we have

AaU = GJGHGF |Λa|−1/2

= GJJFΛa|Λa|−1/2

= GF |Λa|−1/2|Λa|1/2Λa|Λa|−1/2

= UΛa.

Now,

UHU = |Λa|−1/2FHGHGF |Λa|−1/2

= |Λa|−1/2FHJFΛa|Λa|−1/2(5.12)

= |Λa|−1/2 sign(Λa)Λa|Λa|−1/2 = Ip.(5.13)
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(5.12) follows from (5.7) and (5.13) follows from (5.6).310

Moreover, I := Ia−λa is the definiteness interval around zero of the positive definite pair311

(GHG, J) and Algorithm 3.1 with `+ = jb, `− = js applies. After running Algorithm 3.1,312

Λ = Λa + λaIp contains the wanted eigenvalues around λa and U = GF |Λa|−1/2 contains313

the corresponding eigenvectors of the Hermitian matrix A. Instead of multiplying GH by314

G, we modify Algorithm 3.1 to work with factor G in a way that GHGx is implemented315

by GH(Gx) and a preconditioned residual w = Tr with T = (GHG)−1 is implemented by316

solving two linear systems GHz = r and Gw = z. The first matrix (U (i))HGHGU (i) in a317

projected pair can be implemented by (S(i))HS(i), where S(i) := GU (i).318

If we have a pair (A,B) with B positive definite, then by making the Cholesky decompo-319

sition B = LLH the matrix G in the preceding theorem has to be replaced by L−1G. More320

precisely, we have the following proposition.321

PROPOSITION 5.2. Let (A,B) be the given Hermitian matrix pair with B ∈ Cn×n
positive definite. Consider the indefinite decomposition

(5.14) A− λaB = CJCH ,

where λa is taken from any spectral gap Ia of the pair (A,B); J is as in (5.4) and the
Cholesky decompositionB = LLH . Let V ∈ Cn×p, p ≤ n, beB-orthonormal: V HBV = Ip,
spanning a spectral subspace of the pair (A− λaB,B), that is,

(5.15) (A− λaB)V = BV Λa,

where

(5.16) Λa := Λ− λaIp,

Λ is a diagonal matrix containing some of the eigenvalues of the pair (A,B). Set

F = C−1LLHV |Λa|1/2 or, equivalently, V = L−HL−1CF |Λa|−1/2.

Then

(5.17) FHJF = J ,

with J := sign(Λa) and

(5.18) (L−1C)H(L−1C)F = JFΛa,

that is, F spans the corresponding spectral subspace of the pair ((L−1C)H(L−1C), J).322

Conversely, (5.18) and (5.17) imply (5.15) and the fact that V is B-orthonormal.323

Proof. Set A1 = L−1AL−H , U = LHV and G = L−1C. Premultiply (5.14) by L−1

and postmultiply by L−H , use G = L−1C to obtain

A1 − λaI = GJGH .

Premultiply (5.15) by L−1 and use U = LHV to obtain

(A1 − λaI)U = UΛa.

Now, UHU = V HLHLV = V HBV = Ip, set F = G−1U |Λa|1/2 and apply Theorem 5.1324

with Λa from (5.16) and substituting A→ A1.325
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Moreover, I := Ia − λa is the definiteness interval around zero of the positive defi-326

nite pair ((L−1C)H(L−1C), J) and Algorithm 3.1 with `+ = jb, `− = js applies. After327

running Algorithm 3.1, Λ = Λa + λaIp contains the wanted eigenvalues around λa and328

V = L−HL−1CF |Λa|−1/2 contains the corresponding eigenvectors of the matrix pair (A,B)329

with B positive definite. Here we modify Algorithm 3.1 to work with factors L and C in a330

way that t = (L−1C)H(L−1C)x is implemented by331

y = Cx matrix-vector multiplication,
Lz = y solving a linear system,
LHv = z solving a linear system,
CHv = t matrix-vector multiplication;

332

and similarly for a preconditioned residual with the preconditioner T =
(
(L−1C)H(L−1C)

)−1
.333

334

REMARK 5.3. If we have a matrix pair (A,B) withB negative definite, then an analogous335

proposition holds; consider the auxiliary pair (A− λaB,−B).336

Finally, we give the proposition for a definite matrix pair (A,B) with indefinite B and λa337

from any spectral gap.338

PROPOSITION 5.4. Let (A,B) be the given positive definite matrix pair with B ∈ Cn×n

indefinite. Let λ0 be an arbitrary definitizing shift and set Ã = A− λ0B, which is positive
definite. Consider the indefinite decomposition B − (λa − λ0)−1Ã = CJCH , where λa
is taken from any spectral gap Ia, of the pair (A,B); J is as in (5.4) and the Cholesky
decomposition Ã = LLH . Let V ∈ Cn×p, p ≤ n, be Ã-orthonormal: V HÃV = Ip,
spanning a spectral subspace of the pair (B − (λa − λ0)−1Ã, Ã), that is,

(B − (λa − λ0)−1Ã)V = ÃV Λ0a,(5.19)

where

Λ0a := (Λ− λ0Ip)−1 − (λa − λ0)−1Ip,

Λ ∈ Rp×p is a diagonal matrix containing some of the eigenvalues of the pair (A,B). Set

F = C−1LLHV |Λ0a|1/2 or, equivalently, V = L−HL−1CF |Λ0a|−1/2.

Then

(5.20) FHJF = J ,

with J := sign(Λ0a) and

(5.21) (L−1C)H(L−1C)F = JFΛ0a,

that is, F spans the corresponding spectral subspace of the pair ((L−1C)H(L−1C), J).339

Conversely, (5.21) and (5.20) imply (5.19) and the fact that V is Ã-orthonormal.340

Proof. The proof follows immediately from Theorem 5.2 by substitutingA−λaB → B−341

(λa − λ0)−1Ã, B → Ã and Λa → Λ0a.342

Moreover, I := 1/(Ia − λ0)− 1/(λa − λ0) is the definiteness interval around zero of343

the positive definite pair ((L−1C)H(L−1C), J) and Algorithm 3.1 with `+ = js, `− = jb344

applies; notice the change of the indices ± compared to the previous cases. After running345

Algorithm 3.1, Λ = (Λ0a + (λa − λ0)−1Ip)
−1 + λ0Ip contains the wanted eigenvalues346

around λa and V = L−HL−1CF |Λ0a|−1/2 contains the corresponding eigenvectors of347

the positive definite matrix pair (A,B) with indefinite B. Although V HÃV = Ip, after348
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premultiplication (5.19) by V H we get V HBV = Λ0a + (λa − λ0)−1Ip. Therefore, V is349

B-orthogonal and after normalization it becomes B-orthonormal.350

REMARK 5.5. If a matrix pair (A,B) is negative definite with B indefinite, then an351

analogous proposition holds; consider the auxiliary pair (B − (λa − λ0)−1Ã,−Ã).352

REMARK 5.6. When applying Algorithm 3.1 to the corresponding pair from (5.7)353

or (5.21), an initial guess X(0) needs to have at least k+ J-positive columns and k− J-354

negative columns. This is easily achieved by choosing appropriate columns of the identity355

matrix. However, when using inverses, the initial guess needs to have at least k+ B̃−1-positive356

columns and k− B̃−1-negative columns. For the corresponding pair (5.1), B̃ = A−λaB, and357

for (5.2), B̃ = B−(λa−λ0)−1(A−λ0B). Assume Y HJY = Jk for some matrix Y ∈ Cn×k,358

where Jk = diag(±1) and k = k+ + k−. Then for X := CY we have XHB̃−1X = Jk,359

where B̃ = CJCH . Therefore, CX(0) can be used as an initial guess for our algorithm360

applied to the corresponding pair (5.1) or (5.2).361

6. Numerical experiments. In this section, we consider some numerical experiments362

illustrating the performance of Algorithm 3.1 for different k± = `± (a number of the wanted363

eigenpairs) and different m; the dimension of the search subspace is (k+ + k−)m. In some364

experiments we compare different preconditioners for the same initial guess, k±, and m. In365

all experiments we use tol = 10−7 in the convergence criterion (3.6); unless otherwise stated.366

Sometimes our algorithm fails to converge within the allowed number of iterations; we mark367

this failure as∞ in our results. We have two sets of our experiments. In the first set we apply368

Algorithm 3.1 to the original matrix pair to compute eigenpairs around the definiteness interval.369

In the second set we apply Algorithm 3.1 to the transformed matrix pair to compute eigenpairs370

around some arbitrary spectral gap. All experiments have been performed in MATLAB R2014a371

on Intel Core i3-4150 CPU 3.50GHz, 6 GB RAM, with the exception of Example 6.2, which372

has been performed in MATLAB R2014a on Intel i5 760 @ 2.80GHz, 8 GB RAM.373

6.1. The definiteness interval. In this subsection, we consider one product eigenvalue374

problem and two hyperbolic quadratic eigenvalue problems. We apply Algorithm 3.1 to the375

corresponding definite matrix pair. A comparison is made between Algorithm 3.1 for several376

values of m and the corresponding algorithm that uses all previous iteration matrices X(j),377

that is, P (j) for all j ≤ i denoted by “w.h.” in the results; meaning the whole history.378

EXAMPLE 6.1. Consider the product eigenvalue problem

(6.1) MKx = λ2x, KMy = λ2y, 0 6= x, y ∈ Cn,

where M,K ∈ Cn×n are Hermitian positive semidefinite and one of them is positive definite.
This problem appears in computational quantum chemistry [5], where it is of interest to find
a few smallest eigenvalues and the corresponding eigenvectors. Bai and Li developed the
corresponding theory (Cauchy-like interlacing inequalities, the trace minimization principle)
for this problem in [5]. The BPSD-like method for the product eigenvalue problem is proposed
in [52] and LOBPCG-like methods in [6, 7, 8]. It is well known that (6.1) is equivalent to the
GEP for the pair (A,B), where

(6.2) A =

[
K 0
0 M

]
, B =

[
0 I
I 0

]
.

Therefore, λ2 is an eigenvalue of MK if and only if ±λ are the eigenvalues of (A,B), the
corresponding eigenvectors of (A,B) are given by[

x
y

]
,

[
x
−y

]
,
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where x, y are from (6.1). If both K and M are positive definite, then the pair (A,B)379

from (6.2) is trivially positive definite, and finding the smallest eigenvalues of the product380

eigenvalue problem (6.1) is equivalent to finding the eigenvalues around the definiteness381

interval of the pair (A,B). The direct application of our Algorithm 3.1 to the pair (A,B)382

would imply working with matrices of double order. Therefore, a specialized LOBPCG-383

type algorithm has been proposed in [38, Algorithm 3]. This algorithm is mathematically384

equivalent to [6, Algorithm 4.1] and the experiment [38, Example 5.1] demonstrates that these385

two algorithms have a similar convergence behavior. Here we want to compare the behavior386

of the specialized Algorithm 3.1 for different values of m. This specialized algorithm reduces387

memory requirements, computational cost, and CPU time, and preserves the symmetry of the388

computed eigenpairs, compared with the direct application of Algorithm 3.1 to the product389

eigenvalue problem. For brevity, we will not write down this algorithm, but just point out that390

for m = 3 this specialized algorithm is [38, Algorithm 3]. As a concrete example from the391

linear response analysis of the density matrix in electronic structure calculations, we use the392

same matrices as in [8], [38, Example 5.1]. Therefore, the matrices K, M are real, symmetric393

positive definite of order 5660. We refer to [8, Section 5] for more information about these394

matrices and the natural preconditioner for this concrete example.

TABLE 6.1
Product eigenvalue problem from Example 6.1 with a zero shift using exact and CG preconditioners.

m 2 3 4 5 w.h.
k+ = 1

exact # iter 107 41 35 35 35

CG
# iter 108 41 38 37 35

# in.iter 725, 737 355, 353 327, 325 319, 319 302, 298
av.# in.iter 6.78, 6.89 8.88, 8.23 8.84, 8.78 8.86, 8.86 8.88, 8.76

k+ = 2

exact # iter 97, 116 38, 47 34, 39 34, 34 33, 33

CG
# iter 98, 119 38, 48 35, 40 34, 34 32, 33

# in.iter 1411, 1440 741, 728 642, 625 578, 561 550, 538
av.# in.iter 6.56, 6.7 8.82, 8.67 8.79, 8.56 8.76, 8.50 8.73, 8.54

k+ = 3

exact # iter 96, 103, 107 37, 38, 47 34, 36, 40 33, 34, 36 30, 32, 33

CG
# iter 96, 103, 120 37, 39, 49 35, 36, 42 34, 35, 37 29, 31, 34

# in.iter 2042, 1990 1063, 1039 972, 959 912, 904 794, 782
av.# in.iter 6.46, 6.3 8.71, 8.52 8.84, 8.72 8.85, 8.78 8.73, 8.59

k+ = 4

exact # iter 95, 96, 104, 227 36, 37, 39, 70 33, 34, 35, 69 32, 33, 33, 67 29, 29, 30, 36

CG
# iter 98, 98, 102, 222 35, 38, 40, 67 34, 35, 35, 71 33, 33, 34, 65 29, 30, 30, 36

# in.iter 3355, 3306 1549, 1506 1518, 1479 1424, 1406 1029, 1018
av.# in.iter 6.50, 6.41 8.80, 8.56 8.88, 8.65 8.84, 8.73 8.50, 8.41

395

The four smallest positive eigenvalues are given by

λ+1 ≈ 0.541812517132466, λ+2 ≈ 0.541812517132473,

λ+3 ≈ 0.541812517132498, λ+4 ≈ 0.615143209274579.

A comparison is made between the specialized Algorithm 3.1 with m = 2, 3, 4, 5, and the396

corresponding algorithm in which the whole history is included. Results are reported in397

Table 6.1. The rows in this table correspond to one value of k+ for k+ = 1, 2, 3, 4, and the398

columns correspond to one value ofm. Here we use zero as a definitizing shift and two different399

ways for computing preconditioned residuals, i.e., the MATLAB backslash operator, and400
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the linear conjugate gradient method with stopping tolerance 10−2 and a maximum of 20401

iterations; the rows in the table starting with “exact” and “CG”, respectively. Since we use402

a zero shift, the preconditioner T equals A−1 for A from (6.2), so we apply the CG method403

twice: once for K and once for M . The total number of CG iterations is denoted by “# in.iter”404

in Table 6.1; the first number corresponds to the total number for K and the second for M .405

We also put the average number of CG iterations per iteration of the specialized Algorithm 3.1406

denoted by “av.# in.iter”, first for K and then for M . The total number of required iterations407

of the specialized Algorithm 3.1 until all k+ desired eigenvalues have converged is denoted408

by “# iter”. For example, we explain the field by m = 2 and k+ = 3 from Table 6.1: All409

three wanted eigenvalues converge after 107 iterations of Algorithm 3.1 when using the exact410

preconditioner, and after 120 iterations when using CG-based preconditioners. The first411

smallest positive eigenvalue converges after 96 iterations, and the second smallest positive412

converges after 103 iterations. The total number of inner CG iterations for K and M is413

2042 and 1990, respectively. The average number of inner CG iterations per iteration of the414

specialized Algorithm 3.1 for K and M is 6.46 and 6.3, respectively.415

The findings of Table 6.1 are as follows. The total number of required iterations of the416

specialized Algorithm 3.1, and also the total number of inner CG iterations, is reduced by417

increasing the dimension of the search subspace. The most important difference is between418

m = 2 and m = 3; specialized indefinite BPSD/A and specialized indefinite LOBPCG,419

respectively. The total number of required iterations of the specialized variant of Algorithm 3.1420

for m = 3, 4, 5, and when using the whole history is very similar, the largest difference is421

for the fourth Ritz value. The first three positive eigenvalues are clustered, therefore the422

convergence for the first three Ritz pairs is much faster than for the fourth one. Moreover,423

by enlarging the block size k+ we can get a faster convergence to the smallest eigenpair, but424

with more numerical cost per iteration of the specialized Algorithm 3.1. It is very important425

to note that the results for CG-based preconditioners with very crude approximations of the426

preconditioned residuals are very similar, in some cases the same, to the results for exact427

preconditioned residuals. The maximum number of inner CG iterations per iteration of the428

specialized Algorithm 3.1 is 10 for all values of k+ andm including the case in which the whole429

history is included. We have repeated the experiment with CG-based preconditioners with430

stopping tolerance 10−1 and 10−3; the total number of required iterations of the specialized431

Algorithm 3.1 is quite similar to the presented case.432

TABLE 6.2
Product eigenvalue problem from Example 6.1 with a nonzero shift using CG preconditioners.

k+ = 1 k+ = 2 k+ = 3

m 2 3, 4, 5, w.h. 2 3, 4, 5, w.h. 2 3, 4, 5, w.h.
# iter 6 6 6, 6 6, 6 6, 6, 6 6, 6, 6

# in.iter 158 161 310 311 471 476
av.# in.iter 31.6 32.2 31.0 31.1 31.4 31.73

k+ = 4

m 2 3 4 5 w.h.
# iter 6, 6, 6, 46 6, 6, 6, 18 6, 6, 6, 18 6, 6, 6, 18 6, 6, 6, 17

# in.iter 1, 251 908 908 911 881
av.# in.iter 20.85 28.38 28.38 28.47 28.42

Now we choose a relatively close definitizing shift λ0 = 0.54 so we make use of the433

preconditioners T± = (A∓ λ0B)−1. We apply the linear CG method with stopping tolerance434

10−2 and a maximum of 50 iterations. Table 6.2 gives the total number of required iterations435

of the specialized Algorithm 3.1 until all k+ = 1, 2, 3, 4 desired eigenpairs have converged,436
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including the total and the average number of CG iterations for m = 2, 3, 4, 5, and when using437

the whole history. For example, the total number of inner CG iterations for k+ = 1 is 158 for438

m = 2 and in all other cases it is 161. The average number of inner CG iterations per iteration439

of the specialized Algorithm 3.1 for k+ = 1 is 31.6 for m = 2 and it is 32.2 in all other cases.440

The maximum number of inner CG iterations per iteration of the specialized Algorithm 3.1 is441

reached in some cases. When an excellent shift is used, there is no significant difference in the442

convergence of the fourth Ritz value by enlarging the dimension of the search subspace.443

EXAMPLE 6.2. Consider a quadratic eigenvalue problem (QEP)

(6.3) (λ2M + λD +K)x = 0, 0 6= x ∈ Cn,

where M , D, K ∈ Cn×n are Hermitian and M is positive definite. A Hermitian linearization
of (6.3) yields the Hermitian pair (A,B) with

(6.4) A =

[
M 0
0 −K

]
, B =

[
0 M
M D

]
.

The positive definiteness of this matrix pair is equivalent to the hyperbolicity of the original444

QEP [27, 56].445

Here we consider a simple scalable example as in [38, Example 5.2]:

(6.5) K = (n+ 1)2


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 , M = In, D = 2K.

This QEP is hyperbolic; its eigenvalues are given by

λ±j = −αj ±
√
α2
j − αj , where αj = 4(n+ 1)2 sin2 jπ

2(n+ 1)
,

for j = 1, . . . , n. As n increases, the definiteness interval of (A,B) converges to around
(−19.2258,−0.5134). Considering that ‖D‖2 = 2‖K‖2 = O(n2), while ‖M‖2 = 1, we
propose to rescale the pair (A,B) as follows:

(A,B)←
[
I

1
n+1I

]
(A,B)

[
I

1
n+1I

]
.

We aim at computing the eigenvalues λ±j for j = 1, 2, 3, that is, k± = 3 in Algorithm 3.1446

and the variant of Algorithm 3.1 with two preconditioners; see the end of Section 3. A447

comparison is made between Algorithm 3.1 with m = 2, 3, 4, 5, and the corresponding448

algorithm in which the whole history is included. The number of total iterations for B-positive449

and B-negative eigenpairs for n = 2000, 4000, 6000, 8000 is reported in Table 6.3. Notice450

that the order of the linearized pair (A,B) is doubled, so n = 8000 means that we work with451

matrices A,B of order 16, 000. The maximum number of allowed iterations of Algorithm 3.1452

is 300 for one shift and 100 for two shifts. The CPU time is given in brackets in Table 6.3.453

An algebraic multigrid (AMG) V-cycle preconditioner can be used as a black box for solving454

linear systems for the preconditioned residuals in this example since we consider the scalable455

pair (A,B). Therefore, we use the implementation HSL_MI20 [2] with the default settings.456

Since D in (6.5) is positive definite, for fixed n and B given in (6.4), the initial B-positive457
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TABLE 6.3
QEP from Example 6.2 with AMG preconditioners.

m 2 3 4 5 w.h.
n one shift, without deflation

2000 ∞ (7.36) 221 (7.18) 153 (7.79) 172 (11.25) 214 (6020)
4000 ∞ (12.73) ∞ (18.55) 245 (25.65) 192 (23.23) 16 (4.06)
6000 ∞ (19.09) 240 (21.32) 206 (29.81) 132 (22.17) 17 (7.91)
8000 ∞ (24.78) 234 (26.77) 196 (36.72) 63 (12.89) 12 (3.57)
n two shifts, without deflation

2000 81 (1.69) 21 (0.55) 21 (0.94) 19 (1.07) 14 (1.86)
4000 68 (2.70) 22 (1.15) 23 (1.60) 23 (2.35) 24 (14.1)
6000 53 (3.16) 26 (2.29) 20 (2.28) 18 (2.20) 14 (4.83)
8000 37 (3.12) 18 (2.09) 20 (2.65) 21 (3.64) 61 (335)
n two shifts, with deflation

2000 ∞ (1.69) ∞ (1.41) 24 (0.58) 17 (0.63) 18 (1.63)
4000 ∞ (2.83) 19 (0.70) ∞ (3.25) 22 (1.11) 16 (2.21)
6000 ∞ (3.43) 25 (1.27) 27 (1.53) 21 (1.55) 15 (2.77)
8000 ∞ (4.63) 20 (1.44) 20 (1.87) 21 (2.10) 17 (6.37)

and B-negative vectors are chosen as corresponding columns from [0; I] and [M−1D; −I],458

respectively. We use the same initial guess for fixed n and fixed shifts.459

The findings of Table 6.3 are as follows. Enlarging the dimension of the search subspace460

significantly reduces, in almost all cases, the number of total iterations of Algorithm 3.1461

when the shift is not good (in this case, λ0 = −5), but when using two excellent shifts (here,462

λ+0 = −0.514 and λ−0 = −19.22), there is no such significant reduction in the number of total463

iterations in the indefinite (m)-scheme when m is increased. Although in almost all cases the464

use of all previous iteration matrices gives the smallest number of total iterations, there is an465

increase in the numerical cost and memory requirements per iteration. When the dimension466

of the search subspace is fixed, like in Algorithm 3.1, there is a fixed numerical cost and467

memory requirements per iteration. When two excellent shifts are used, we see that enlarging468

the dimension of the search subspace increases CPU time. Again, the indefinite (m)-scheme469

with m = 3, i.e., indefinite LOBPCG, is more efficient than the indefinite (m)-scheme with470

m = 2, i.e., indefinite BPSD/A. We notice that the number of total iterations of Algorithm 3.1471

with two shifts for fixed m is very similar for different values of n.472

EXAMPLE 6.3. Consider another hyperbolic quadratic eigenvalue problem with matrices

(6.6) K =


15 −5

−5
. . . . . .
. . . . . . −5

−5 15

 , M = In, D = 2K.

These matrices can be produced by the command nlevp(’spring’,n,1,10,5,10,5)
from a collection of NLEVP [10] and the eigenvalues are given by

λ±j = −αj ±
√
α2
j − αj , where αj = 5

(
3− 2 cos

jπ

n+ 1

)
,

for j = 1, . . . , n. As n increases, the definiteness interval of the linearized pair (A,B)473

from (6.4) converges to around (−9.4721,−0.52786). Moreover, the gaps between eigenval-474

ues become arbitrarily small as n→∞. The illustration for n = 1000 is given in Fig. 6.1.475

The inefficiency of Algorithm 3.1 with m = 3 (since it uses only one preconditioner)476

is illustrated in [38, Example 5.3] caused by a decrease in the eigenvalue gaps; illustration477
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FIG. 6.1. Eigenvalues of Example 6.3 for n = 1000. The definiteness interval of the pair (A,B),
when n increases, is around (−9.4721,−0.52786). 1000 B-negative eigenvalues are in the interval around
(−49.4948,−9.4721) and 1000 B-positive eigenvalues are in the interval around (−0.52786,−0.5051).

was made using the exact preconditioner with shift λ0 = −5, nearly in the middle of the478

definiteness interval. However, exact tailored preconditioners T± perform very well. Here we479

want to compare Algorithm 3.1 with two shifts and with m = 2, 3, 4, 5, 10, and when using480

the whole history. Here we use λ−0 = −9.47 and λ+0 = −0.528 as definitizing shifts and two481

different ways for computing preconditioned residuals: the MATLAB backslash operator482

and the linear CG method with stopping tolerance 10−2 and a maximum of 50 iterations.483

The obtained results for exact preconditioners and CG-based preconditioners are reported in484

Table 6.4 and Table 6.5, respectively. We aim at computing the eigenvalues λ±j for j = 1, 2, 3,

TABLE 6.4
QEP from Example 6.3 with two shifts and exact inverse preconditioners.

m 2 3 4 5 10 w.h.
n = 1000

# iter B-pos 227 37 30 28 23 20
# iter B-neg 19 10 10 9 9 9
CPU time (1.74) (0.35) (0.36) (0.39) (0.48) (0.84)

n = 2000
# iter B-pos 720 73 62 61 49 36
# iter B-neg 54 17 16 15 14 14
CPU time (11.9) (1.30) (1.63) (1.76) (2.62) (7.35)

485

that is, k± = 3 in the variant of Algorithm 3.1 with two preconditioners. We list the number of486

required iterations for B-positive and B-negative eigenpairs to converge separately, denoted487

by “# iter B-pos” and “# iter B-neg”, respectively, in Tables 6.4 and 6.5 for n = 1000 and488

n = 2000; note that the order of the pair (A,B) is doubled. The CPU time is also given489

in both tables. The total number of inner CG-iterations is given in Table 6.5, separately for490

preconditioned residuals corresponding to B-positive and B-negative Ritz vectors, denoted by491

“# in.iter B-pos” and “# in.iter B-neg”, respectively.492

The findings of Tables 6.4 and 6.5 are as follows. The total number of required iterations493

of Algorithm 3.1 with two shifts, and also the total number of inner CG iterations, are reduced494

by increasing the dimension of the search subspace. The most important difference is again495
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TABLE 6.5
QEP from Example 6.3 with two shifts and CG-based preconditioners.

m 2 3 4 5 10 w.h.
n = 1000

# iter B-pos 239 51 47 42 37 35
# iter B-neg 288 79 79 79 80 77

# in.iter B-pos 23, 942 6950 6400 6000 5300 5100
# in.iter B-neg 34, 350 11, 550 11, 500 11, 500 11, 600 11, 350

CPU time (8.06) (1.22) (1.54) (1.70) (2.55) (7.38)
n = 2000

# iter B-pos 716 89 86 77 72 67
# iter B-neg 941 151 151 151 151 113

# in.iter B-pos 71, 696 12, 750 11, 800 11, 200 10, 500 9900
# in.iter B-neg 90, 050 24, 450 22, 450 22, 450 22, 400 16, 800

CPU time (26.56) (5.93) (8.39) (8.70) (14.38) (271.9)

between m = 2 and m = 3. Significant savings in CPU time are achieved by switching from496

m = 2 to m = 3. Algorithm 3.1 needs more CPU time by a further increase in the dimension497

of the search subspace, especially when using the whole history. The effectiveness of the498

tailored preconditioners (A− λ±0 B)−1 deteriorates as n increases, due to the decrease in the499

eigenvalue gaps. In this example, in contrast to Example 6.1, the exact preconditioners (note500

that matrices A, B are sparse) have outperformed the CG-based preconditioners.501

Finally, we demonstrate that using a shift λ+0 that is very close to the eigenvalue λ+1502

accelerates the convergence of Algorithm 3.1, as observed in Section 4.1. We list the required503

number of iterations for all six eigenpairs separately in Table 6.6.504

TABLE 6.6
QEP from Example 6.3 with two exact inverse preconditioners with shifts λ−0 = −9.47 and λ+0 = −0.528,

(λ+0 = −0.5279) for n = 1000.

m λ−3 λ−2 λ−1 λ+1 λ+2 λ+3 CPU time

2 19 13 11 133 (41) 157 (49) 227 (71) 1.74 (0.66)
3 10 9 8 35 (19) 36 (21) 37 (24) 0.35 (0.27)
10 9 8 8 22 (14) 22 (15) 23 (15) 0.48 (0.37)

6.2. The arbitrary gaps. In this subsection, we consider ordinary eigenvalue problems505

with indefinite and positive definite matrices, as well as a definite generalized eigenvalue506

problem with both matrices indefinite. A comparison is made between Algorithm 3.1 applied507

to the corresponding pair (5.1) or (5.2), and to the corresponding pair from (5.7) or (5.21).508

In our results, the former is denoted by “using (an) inverse(s)” and the latter by “using (a)509

decomposition(s)” . An indefinite decomposition of a particular matrix is obtained by [53, pp.510

1–2]. A maximum number of allowed iterations is 100 in all experiments. All our results are511

reported in tables, where for a fixed k±:512

(i) the first column corresponds to the total number of iterations of Algorithm 3.1,513

(ii) the second column corresponds to the 2-norm of the absolute error AV − BV Λ,514

where Λ is a diagonal matrix of approximations of the wanted eigenvalues, and V is515

a matrix of approximations of the corresponding eigenvectors,516

(iii) the third column corresponds to CPU time; the execution time of Algorithm 3.1517

applied to the transformed matrix pair.518

Although the initial guesses when using inverses and decompositions are connected (see519

Remark 5.6), due to roundoff, we can expect a different total number of iterations of our520

algorithm when using inverses and decompositions. Notice that T = I , when applying our521
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algorithm to the pair (I, (A− λaI)−1), while T = (GHG)−1, when applying our algorithm522

to the pair (GHG, J).523

EXAMPLE 6.4. We first consider two sparse ordinary eigenvalue problems with real sym-524

metric indefinite matrices coming from Platzman’s oceanographic models. These problems are525

part of the Harwell-Boeing collection [19]. We obtain them from the Matrix Market [1]. All526

eigenvalues occur in pairs, with the exception of an isolated singleton at zero. The eigenvalues527

of interest are interior eigenvalues, located in the interval (0.0001, 0.024). Numerical experi-528

ments with these matrices can be found, for example, in [23, Section 5.1] and [50, Example529

4.4.2].530

TABLE 6.7
The Atlantic Ocean model from Example 6.4 with the convergence criterion (3.6) and tol = 10−7.

m k± = 2 k± = 6 k+ = 0, k− = 6
using an inverse

3 25 10−13 (0.30) 28 10−12 (0.78) 34 10−12 (0.61)
5 15 10−13 (0.22) 21 10−12 (0.96) 31 10−12 (0.76)
10 15 10−12 (0.30) 21 10−11 (2.88) 21 10−12 (1.15)

using a decomposition

3 15 10−10 (0.14) 22 10−9 (0.40) 58 10−9 (0.62)
5 13 10−10 (0.15) ∞ 10−1 (3.30) ∞ 10−2 (2.08)
10 11 10−9 (0.17) ∞ 10−2 (7.10) ∞ 10−2 (3.50)

TABLE 6.8
The Atlantic Ocean model from Example 6.4 with m = 10 and the convergence criterion (6.7).

tol k± = 6 k+ = 0, k− = 6
using an inverse

10−7 14 10−10 (1.51) 16 10−10 (0.32)
10−8 16 10−11 (1.62) 19 10−11 (0.40)

using a decomposition

10−7 8 10−4 (0.22) 10 10−5 (0.14)
10−8 11 10−5 (0.34) 11 10−6 (0.16)

First, we consider a finite-difference model for the shallow wave equations for the Atlantic
Ocean. The corresponding matrix A is of order 362 with λmin ≈ −3.55 · 10−12 and λmax ≈
0.77. Here we want to compute the eigenpairs around the shift λa = 0.024. Therefore,
we apply Algorithm 3.1 to the pair (I, (A − λaI)−1) and to the pair (GHG, J), where
A− λaI = GJGH . In our implementation we have ‖(A− λaI)−GJGH‖2 ≈ 10−15. The
results are reported in Table 6.7. For example, Algorithm 3.1 with m = 10 applied to the
matrix pair (I, (A − λaI)−1) needs 21 iterations to compute approximations for the first
6 eigenpairs on both sides of λa. The corresponding absolute error is of order 10−11 and
Algorithm 3.1 runs 2.88 seconds. However, Algorithm 3.1 applied to the decomposition of
A− λaI does not converge within the allowed number of iterations. A possible way to avoid
such a non-convergence is to use another convergence criterion (see the discussion in [18,
Section 4]), such as

(6.7) ‖r±j ‖2 ≤ tol ·
(
‖A‖2 + |θ±j | ‖B‖2

)
‖x±j ‖2.

For large sparse matrices estimates of the 2-norms are used; in this exampleB = I . The results531

with m = 10 and the new convergence criterion are reported in Table 6.8. The convergence532

is now achieved in all cases when using a decomposition. When applying Algorithm 3.1533
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to the pair (I, (A− λaI)−1), the algorithm takes fewer iterations by using the convergence534

criterion (6.7) than by using (3.6), but with larger absolute error. By decreasing the tolerance535

tol (for example, from 10−7 to 10−8) we can achieve a smaller absolute error.536

TABLE 6.9
The Atlantic and Indian Ocean model from Example 6.4. For every fixedm, the first row refers to the convergence

criterion (3.6) and the second row to the convergence criterion (6.7).

m k± = 2 k± = 6 k± = 20
using an inverse

3 33 10−12 (0.91) 41 10−12 (2.23) 43 10−11 (10.89)
20 10−10 (0.55) 25 10−9 (1.31) 36 10−9 (9.06)

5 24 10−13 (0.79) 25 10−11 (2.58) 41 10−11 (31.16)
18 10−10 (0.49) 18 10−9 (1.53) 31 10−9 (23.51)

10 21 10−13 (1.06) 21 10−13 (4.88) 38 10−12 (133.7)
14 10−10 (0.49) 14 10−10 (2.31) 27 10−9 (88.49)

using a decomposition

3 21 10−9 (1.36) ∞ 10−2 (8.70) ∞ 10−1 (30.36)
9 10−3 (0.59) 12 10−4 (0.98) 25 10−4 (7.15)

5 ∞ 10−2 (7.53) ∞ 10−2 (13.91) ∞ 10−1 (60.41)
8 10−3 (0.47) 9 10−4 (1.01) ∞ 10−1 (60.21)

10 21 10−9 (1.44) ∞ 10−2 (26.60) ∞ 10−2 (184.7)
8 10−3 (0.47) 8 10−4 (0.95) 11 10−4 (10.04)

Next, we consider a finite-difference model for the shallow wave equations for the Atlantic537

and Indian Ocean. The corresponding matrix A is of order 1919 with λmin ≈ −3.40 · 10−16538

and λmax ≈ 2.92. Here we want to compute the eigenpairs around the shift 0.0121 in539

the middle of the interval of interest. In our implementation we have ‖(A − 0.0121I) −540

GJGH‖2 ≈ 10−14. The results are reported in Table 6.9. For m = 10 and k± = 2 by using541

the convergence criterion (3.6), Algorithm 3.1 applied to the inverse and Algorithm 3.1 applied542

to the decomposition terminate after 21 iterations, but the former is faster and more accurate543

than the latter. In all cases when our algorithm terminates within the allowed number of544

iterations, it takes fewer iterations by using the convergence criterion (6.7) than by using (3.6),545

but with larger absolute error. Algorithm 3.1 applied to the decomposition is quite sensitive to546

a convergence criterion. In many cases, it does not converge within the allowed number of547

iterations when using (3.6).548

By observing the results from Tables 6.7–6.9, we can see that Algorithm 3.1 applied to549

the inverse is more accurate than Algorithm 3.1 applied to the decomposition regardless of a550

convergence criterion.551

EXAMPLE 6.5. In this example, we consider a sparse ordinary eigenvalue problem with552

a real symmetric positive definite matrix. More precisely, we consider a five-point finite553

difference discretization of the Laplace operator on a 115 × 115 uniform mesh of the unit554

square without the circle with radius 0.5 centered in the left vertex. The corresponding matrix555

A is of order 10, 279. We want to detect first k± = 1, 5, 10 eigenvalues around the shift λa = 7.556

Therefore, we apply Algorithm 3.1 to the pair (I, (A − λaI)−1) and to the pair (GHG, J),557

where A−λaI = GJGH . In our implementation we have ‖(A−λaI)−GJGH‖2 ≈ 10−14.558

The results are reported in Table 6.10.559

As in the previous example, in all cases when our algorithm terminates within the allowed560

number of iterations, it takes fewer iterations by using the convergence criterion (6.7) than by561

using (3.6), but with larger absolute error. When using the decomposition the absolute error is562

satisfactory with (3.6) (in the cases when the algorithm terminated within the allowed number563

of iterations), but is very unsatisfactory with (6.7). In the latter case the algorithm terminates564
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TABLE 6.10
The Laplacian eigenvalue problem on the 115× 115 uniform mesh from Example 6.5. For every fixed m, the

first row refers to the convergence criterion (3.6) and the second row to the convergence criterion (6.7).

m k± = 1 k± = 5 k± = 10
using an inverse

3 10 10−14 (0.77) 27 10−12 (7.99) 41 10−10 (24.68)
8 10−11 (0.51) 19 10−9 (4.51) 33 10−9 (19.26)

5 10 10−15 (0.82) 19 10−12 (9.10) 41 10−10 (118.7)
8 10−11 (0.63) 15 10−10 (5.55) 22 10−9 (47.72)

10 10 10−14 (0.99) 20 10−12 (21.24) 21 10−11 (100.0)
8 10−11 (0.53) 12 10−9 (10.35) 15 10−10 (49.37)

using a decomposition

3 9 10−11 (1.70) 52 10−9 (17.81) ∞ 10−1 (64.61)
3 10−2 (0.62) 6 10−2 (1.92) 7 10−2 (3.99)

5 9 10−11 (1.89) ∞ 10−1 (55.28) ∞ 10−1 (114.5)
3 10−2 (0.67) 41 10−2 (20.41) 7 10−3 (5.28)

10 9 10−11 (1.72) ∞ 10−1 (96.29) ∞ 10−1 (265.2)
3 10−2 (0.56) 6 10−2 (2.30) 7 10−3 (5.93)

too quickly with very poor approximations of the wanted eigenpais.565

EXAMPLE 6.6. In the last example, we consider a quadratic eigenvalue problem (6.3)566

with matrices M,D,K from the spring example (6.6). The positive definiteness of M,D,K567

implies both A,B from (6.4) to be indefinite. Therefore, in detecting an arbitrary spectral gap568

we need to use the pair (5.2) or Proposition 5.4. First, we apply “perfect shufflling” [57, p.569

104] to the matrix pair (A,B), that is, we use auxiliary matricesA1 = PHAP , B1 = PHBP,570

where P is a permutation matrix given by Pe2j−1 = ej , Pe2j = ej+n, j = 1, . . . , n and ej571

is the jth column of the identity matrix I2n. This is a trick that transforms both matrices A,B572

to five-diagonal matrices A1, B1:573

A1 =


1 0 0

−15 0 5
1 0 0

−15 0 5

. . .
. . .

. . .
sym

5
0

−15

 , B1 =


0 1 0

30 0 −10
0 1 0

30 0 −10

. . .
. . .

. . .
sym

−10
1
30

.

The matrix pair (A,B) is congruent to (A1, B1): the eigenvalues are the same, and the574

eigenvectors are multiplied by P . Let λ0 be an arbitrary definitizing shift and λa the given shift575

from any spectral gap of the positive definite matrix pair (A,B) from (6.4). Set Ã1 = A1 −576

λ0B1 � 0.577

TABLE 6.11
QEP from Example 6.6 using inverses. For every fixed m, the first row refers to the convergence criterion (3.6)

and the second row to the convergence criterion (6.7).

m k± = 1 k± = 5 k± = 10

3 15 10−11 (0.37) 24 10−10 (0.89) 28 10−10 (1.72)
11 10−9 (0.36) 19 10−8 (0.63) 22 10−8 (1.30)

5 14 10−12 (0.41) 55 10−10 (4.04) 25 10−9 (4.94)
10 10−8 (0.31) 21 10−8 (1.33) 21 10−8 (3.39)

10 14 10−12 (0.49) 31 10−10 (7.34) 30 10−11 (18.2)
12 10−9 (0.39) 19 10−8 (3.91) 17 10−8 (8.70)
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Consider the indefinite decomposition B̃1 = B1 − (λa − λ0)−1Ã1 = CJCH obtained578

by [53], but with a pivoting strategy given in [13, Algorithm E]. That pivoting strategy is579

designed for five-diagonal real symmetric or Hermitian matrices and preserves the five-diagonal580

structure during the process. In our implementation we have ‖B̃1 − CJCH‖2 ≈ 10−14. Let581

L be the Cholesky factor of Ã1; cf. Theorem 5.4. Set n = 1000 in (6.6) and λ0 = −5.582

We want to detect first k± = 1, 5, 10 eigenvalues around the shift λa = −30; in the middle583

of B-negative eigenvalues: see Figure 6.1. Therefore, we apply Algorithm 3.1 to the pair584

(Ã−11 , B̃−11 ) and to the pair (CHC, J). The results are reported in Table 6.11. We omit the585

results when using decompositions since, in almost all cases, either the algorithm does not586

converge within the allowed number of iterations or the absolute error is O(10−3) or larger.587

7. Conclusions. Numerical experiments [35] for a generalized eigenvalue problem with588

both symmetric positive definite matrices demonstrate that a (k)-scheme of preconditioned589

gradient iterations [43, 44] for k ≥ 4 is of minor importance and that the locally optimal590

block preconditioned conjugate gradient (LOBPCG) iteration is an optimal eigensolver within591

that (k)-scheme. In our experiments, we noticed that indefinite LOBPCG is much faster592

than indefinite block preconditioned steepest descent/ascent (BPSD/A). A further increase593

in the dimension of the search subspaces often leads to a decrease in the total number of594

iterations of our Algorithm 3.1; it is especially significant when a preconditioner is poor (when595

a definitizing shift is not close to the boundaries of the definiteness interval), although it is more596

memory- and time-consuming. When excellent preconditioners are used, we can conclude597

that indefinite LOBPCG is an optimal eigensolver within our indefinite (m)-scheme, that is,598

Algorithm 3.1. In some cases, very crude approximations of the preconditioned residuals can599

be used.600

There is an important difference between LOBPCG type algorithms designed for a601

hyperbolic quadratic eigenvalue problem [9, 41, 55] and our indefinite LOBPCG type algorithm602

applied to the matrix pair from the linearization: the former can use any initial guess, the603

latter needs to contain at least as many B-positive and B-negative vectors as we want to604

compute. Many new indefinite eigensolvers can be proposed using some appropriate search605

subspace and applying the Rayleigh–Ritz projection method that extracts interior eigenpairs.606

The generic indefinite algorithm (cf. [50, Algorithm 2.1]) is given in Algorithm 7.1. If the607

column space of every iteration matrix of the Ritz vectors is included in the subspace U (i),608

then choosing a valid initial guess will provide enough B-positive and B-negative vectors609

in any basis matrix U (i) of U (i) for all i = 1, 2, . . . . Some choices of the subspace U (i)
610

of Algorithm 7.1 can, with a good separation of the desired eigenvalues, lead to the fast611

convergence without preconditioning. However, if preconditioning is used, then we propose612

to add the column space of the preconditioned residual of the current iteration matrix to the613

subspace U (i). The crucial thing is to know at least one definitizing shift; it is trivial if A is614

positive definite. For finding such a shift, we can use the algorithm given in [24]. For some615

examples in applications, knowing only one definitizing shift is not enough, two are necessary.616

Not just any two definitizing shifts, but those shifts that are close to the boundaries of the617

definiteness interval. Finding an algorithm that can give such two definitizing shifts is a matter618

of the future work.619

Finally, we derived some ideas how to use an indefinite eigensolver (for example, Al-620

gorithm 3.1) to compute a few eigenvalues around any spectral gap and the corresponding621

eigenvectors of a definite matrix pair. The proposed spectral transformations can be applied622

to those definite matrix pairs for which solving the corresponding linear systems is easy or623

performing decompositions is not expensive and can be done very accurately. Our experi-624

ments demonstrate that the application of Algorithm 3.1 to a transformed pair with inverses is625

more efficient than the application to a transformed pair with decompositions. Enlarging the626
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Algorithm 7.1 Generic indefinite eigensolver
Input: A, B ∈ Cn×n: coefficients of positive definite pair (A,B) with indefinite B;
Output: k+ smallest B-positive eigenpairs and k− largest B-negative eigenpairs.

1: for i = 1, 2, . . . do
2: Construct a subspace U (i) of dimension m � n such that (k+, k−, 0) ≤

In
[
(U (i))HBU (i)

]
holds for any basis matrix U (i).

3: Apply the Rayleigh–Ritz procedure to (A,B) with respect to the subspace U (i) and
extract k+ smallest B-positive and k− largest B-negative Ritz pairs.

4: end for

dimension of the search subspaces can reduce the total number of iterations of Algorithm 3.1,627

but often increases CPU time. Therefore, we can recommend to use m = 3 in our indefinite628

m-scheme, that is, to use the indefinite LOBPCG iteration.629
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